Learning to Learn for Global Optimization of Black Box Functions
نویسندگان
چکیده
We learn recurrent neural network optimizers trained on simple synthetic functions by gradient descent. We show that these learned optimizers exhibit a remarkable degree of transfer in that they can be used to efficiently optimize a broad range of derivative-free black-box functions, including Gaussian process bandits, simple control objectives, global optimization benchmarks and hyper-parameter tuning tasks. Up to the training horizon, the learned optimizers learn to tradeoff exploration and exploitation, and compare favourably with heavily engineered Bayesian optimization packages for hyper-parameter tuning.
منابع مشابه
Learning to Learn without Gradient Descent by Gradient Descent
We learn recurrent neural network optimizers trained on simple synthetic functions by gradient descent. We show that these learned optimizers exhibit a remarkable degree of transfer in that they can be used to efficiently optimize a broad range of derivative-free black-box functions, including Gaussian process bandits, simple control objectives, global optimization benchmarks and hyper-paramete...
متن کاملA Meta-heuristic Algorithm for Global Numerical Optimization Problems inspired by Vortex in fluid physics
One of the most important issues in engineering is to find the optimal global points of the functions used. It is not easy to find such a point in some functions due to the reasons such as large number of dimensions or inability to derive them from the function. Also in engineering modeling, we do not have the relationships of many functions, but we can input and output them as a black box. The...
متن کاملFunneled Bayesian Optimization for Design, Tuning and Control of Autonomous Systems
Bayesian optimization has become a fundamental global optimization algorithm in many problems where sample efficiency is of paramount importance. Recently, there has been proposed a large number of new applications in fields such as robotics, machine learning, experimental design, simulation, etc. In this paper, we focus on several problems that appear in robotics and autonomous systems: algori...
متن کاملRobust Bayesian Optimization with Student-t Likelihood
Bayesian optimization has recently attracted the attention of the automatic machine learning community for its excellent results in hyperparameter tuning. BO is characterized by the sample efficiency with which it can optimize expensive black-box functions. The efficiency is achieved in a similar fashion to the learning to learn methods: surrogate models (typically in the form of Gaussian proce...
متن کاملA deterministic global optimization using smooth diagonal auxiliary functions
In many practical decision-making problems it happens that functions involved in optimization process are black-box with unknown analytical representations and hard to evaluate. In this paper, a global optimization problem is considered where both the goal function f(x) and its gradient f (x) are black-box functions. It is supposed that f (x) satisfies the Lipschitz condition over the search hy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1611.03824 شماره
صفحات -
تاریخ انتشار 2016